Showing posts with label Probability of an event and its complement. Show all posts
Showing posts with label Probability of an event and its complement. Show all posts

Wednesday, October 29, 2008

Probability Of An Event

RESULT 1
Consider the set
S of all possible outcomes of an experiment or a trial. A set of this kind sometimes called a Probability space or Sample space. Any event A can be represented by the subset of S, which contains all the outcomes in which the event occurs

Let S contains a finite number of equally likely outcomes, say m, so that n(S) = n. Let the event A has m sample points so that n(A) = m.
We have
       P(A) = n(A)/ n(S) = m/n
                  = Number of Favourable Outcomes
                      Number of Possible Outcomes
                                        
              Since A is a subset of S,

          
   Therefore 0 n  i.e., 0 ≤ m/n ≤ 1
                                            Hence ≤ P(A) ≤ 1
Note: The probability of an event A is a number between 0 and 1 inclusive. If  P(A) = 0, then the event cannot possibly occur.
If  P(A) = 1, then the event is certain to occur.
RESULT 2       
       _
Let  A denote the event  'A does not occur
                              _           _
                 Now P(A)  = n(A) /n(S) = n-m = 1-m     
                                                                  n           n
                                                                 = 1 -  P(A)
                                                 _       
                             Therefore P(A) = 1 -  P(A)
                                                              _
                            This implies P(A) + P(A) = 1